Parabolic differential equations and vector-valued Fourier analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector-valued modular forms associated to linear ordinary differential equations

We consider a class of linear ordinary differential equations determined by a modular form of weight one, and construct vector-valued modular forms of weight two by using solutions of such differential equations.

متن کامل

for parabolic partial differential equations

number of iterationsrequired to meet the convergencecriterion. the converged solutions from the previous step. This significantly reduces the interfacial boundaries, the initial estimates for the interfacial flux is given from scheme. Outside of the first time step where zero initial flux is assumed on all between subdomains are satisfied using a Schwarz Neumann-Neumam iteration method which is...

متن کامل

Markov processes and parabolic partial differential equations

In the first part of this article, we present the main tools and definitions of Markov processes’ theory: transition semigroups, Feller processes, infinitesimal generator, Kolmogorov’s backward and forward equations and Feller diffusion. We also give several classical examples including stochastic differential equations (SDEs) and backward SDEs (BSDEs). The second part of this article is devote...

متن کامل

Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning

This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...

متن کامل

On the Vector Valued Fourier Transform and Compatibility of Operators*

is the dual group of G, and p ′ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F G if F G ⊗ T : Lp(G)⊗X → Lp′ (G ′ )⊗ Y admits a continuous extension [F , T ] : [Lp(G), X ] → [Lp′ (G ′ ), Y ]. We show that if G is topologically isomorphic with R×Z×F, where l and m are nonnegative integers and F is a compact group with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1989

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-58-1-61-75